[0051] Note that, in the above-mentioned third construction, the above-mentioned channel width direction is perpendicular to the scan direction of the laser light irradiated onto the semiconductor layer of the above-mentioned thin film transistor. [0052] Further, the base with the curved surface is curved in a concave or a convex shape. When it is curved in a certain single direction, it can be said that the base has a curved surface with a curvature along one direction, and with no curvature along another direction. Therefore, fourth construction of the present invention which represents another construction thereof relates to a semiconductor device, characterized in that the channel length directions of a plurality of thin film transistors provided onto a surface of a base having a curved surface with a curvature along one direction and with no curvature along another direction are all arranged in the same direction, and the above-mentioned channel length directions and the direction without curvature run in the same direction. [0053] Note that, the above-mentioned fourth construction is characterized in that the above-mentioned channel length direction is the same direction as the scan direction of the laser light irradiated onto the semiconductor layers of the above-mentioned thin film transistors. [0054] Further, the present invention can be applied to a flexible film (a film that can be curved), and is more preferably applied in a case where the peeled layer is applied to a film that is curved in one direction. Note that, the flexible film is not curved when in its normal state, but rather is curved in a certain direction by means of some external force. Thus, fifth construction of the present invention which represents another construction thereof relates to a semiconductor device, characterized in that a plurality of thin film transistors are provided onto a base that can be curved into a concave shape or a convex shape, the channel length directions of the plurality of thin film transistors are all arranged in the same direction, and the direction in which the above-mentioned base is bent and the above-mentioned channel length direction are different from each other. [0055] Note that, the above-mentioned fifth construction is characterized in that the above-mentioned channel length directions are the same direction as the scan direction of laser light that is irradiated onto the semiconductor layers of the thin film transistors. Further, in the above-mentioned fifth construction, the above-mentioned curved direction and the above-mentioned channel length directions cross each other perpendicularly, which is to say that the above-mentioned curved direction and the channel width directions run in the same direction. [0056] Note that, in the present specification, the transfer body refers to a base which is adhered to the peeled layer after the peeling, and, provided that it has a curved surface, it may be formed of plastic, glass, metal, ceramic or a material of any other composition without restriction. Further, in the present specification, the support refers to a base which is adhered to the layer to be peeled off when the peeling is performed with the physical means, and it may be formed of plastic, glass, metal, ceramic or a material of any other composition without particular restriction. Further, the shape of the transfer body and the shape of the support are not particularly restricted, and they may have flat surfaces, they may have curved surfaces, they may be curved, and they may be film shaped. Further, if light-weight is to be given top priority, then a film-shape plastic substrate is desirable, such as, for example, polyethylene terephthalate (PET), polyether sulfone (PES), polyethylene naphthalate (PEN), polycarbonate (PC), nylon, polyether ether ketone (PEEK), polysulfone (PSF), polyether imide (PEI), polyarilate (PAR), polybutylene terephthalate (PBT) and the like. [0057] Further, the above-mentioned respective manufacturing methods enable realization of a display having a curved surface, which can be mounted in a vehicle such as an automobile, an aircraft, a seagoing vessel, a train, and the like. An interior wall, ceiling, or other part of the vehicle is formed of a smooth and curved surface so that the large open space can be secured inside the vehicle and no problem occurs even when a person's body bumps into it for some reason. Thus, Construction 6 of the present invention which represents another construction thereof relates to a vehicle in which there is mounted a display device having a thin film transistor and a light emitting element in which a layer containing an organic compound serves as a light emitting layer, as a measuring instrument or as an illumination device. The display device having the thin film transistor and the light emitting element in which a layer containing an organic compound serves as a light emitting layer is preferably of an active matrix-type, but it is also possible to manufacture a passive-type display device as well. [0058] For example, a window of the vehicle may be used as the base, and the display device having the light emitting element in which a layer containing an organic compound serves as a light emitting layer may be curved and adhered to fit the curved surface of the window, thereby enabling display of an image or of a measuring instrument. More particularly, the display device having the light emitting element in which a layer containing an organic compound serves as a light emitting layer can be made extremely thin and lightweight, such that the space inside the vehicle is not altered. In the case where the display device having the light emitting element in which a layer containing an organic compound serves as a light emitting layer is attached to the window of the vehicle, it is desirable that the substrate, the electrodes and the wiring be transparent, and a film for blocking external light may also be provided. Further, it is desirable that the scenery of the outside can be viewed without obstruction when a display is not being performed. [0059] Further, display of an image or a measuring instrument can also be performed when the display having the light emitting element in which the layer containing the organic compound serves as the light emitting layer is curved and attached along the interior wall, door, seat or dashboard of the vehicle. Since it is sufficient simply to attach the flexible display device of the present invention along a curved surface, the process of installing the display device is simple, and it is not particularly necessary to perform local machining of the interior wall, door, seat, or dashboard portion. Further, in an automobile, for example, if the automobile is driven from the right-hand side, there is a blind spot on the rear left side since a portion of the vehicle body (a portion between the windows) exists there. However, if the flexible display device of the present invention is attached to the portion between the windows and a camera capable of capturing the blind spot is attached on the exterior of the vehicle, and the display device and the camera are attached to each other, then the driver can confirm the blind